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Fig. 2. HP 8510B automated network amalyzer set-up for the measurement
of the complex reflection coefficient of a dielectric sample embedded in a
matched rectangular waveguide.
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iterations required by each method to converge to the root within a

specified tolerance ( 10–6 ). Only Muller’s and Davidenko’s methods

were compared. In this example, Muller’s method appears to converge

faster than Davidenko’s for some initial guesses but diverges for other

values. As in the previous example, the number of iterations required

by Davidenko’s method to converge is independent of the initial guess

chosen (N R 17). For the given measured data, both Muller’s and

Davidenko’s methods yield a complex relative dielectric permittivity

of C, R (2.080465, –0.051842).

IV. CONCLUSIONS

In this paper we explored the capabilities of Davidenko’s method

as a complex root-search routine. It shows to be as promising as

Muller’s method and hence could be used as an alternative if Muller’s

method is slowly convergent or if it fails to converge to the root.

The only apparent setback for Davidenko’s method is that it requires

the analytical expression of the first derivative (if it exists) of the

complex function.
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Mutual Coupling Between Two Small

Circular Apertures in a Conducting Screen

Sava V. Savov

Abstract-With the use of the reaction integral and two-dimensional

Fourier transform, an analytical expression for mutual coupting between

two small circular apertures in a conducting screen, excited by normally

incident plane electromagnetic wave, is obtained. Numerical examples
for two different polarizations of the plane wave are investigated. The
expression for the mutual admittance gives a correct value of the self
admittance of a small aperture when the distance between the holes is
equal to zero.

I. INTRODUCTION

The problem of computing the mutual coupling between two

equal apertures is a classical one. For the case of two narrow

parallel rectangular apertures excited by a plane electromagnetic

wave, it is dual of the problem of computing mutual coupling

between two electric dipoles, which was solved for the first time

by Cmter [1] and later more accurately by King [2]. The problem

of computing analytically the mutual coupling between two open

circular waveguides was solved by Bailey [3]. The problem of the

computing analytically the mutual coupling between two circular

apertures in a conducting screen, excited by a plane wave, is studied

in this paper.
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Fig. 1. The geometry of the problem.
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II. FORMULATION AND SOLUTION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. Two equal

apertures Al and AZ having radius a are considered. The first one has

a center 01(0, O) and the second one Oz (R cos 41, R sin ~), where

R is the distance between two centers and d is specified in Fig. 1.

For the sake of convenience two different polar coordinates (at each

aperture) are chosen (o,, p,)(~ = 1, 2).

By definition, the mutual admittance between two apertures is

given by the reaction integral [4]:

Y12 = –L-
1-

M1 . ~;dxldyl
vll’2

A 1

(1)

where according to the equivalence principle the magnetic current

~, is related to the electric field ~, by M, = 2 x ~, ( 2 is unit

vector along the z-axis). The magnetic field E2 is generated by the

current h!lz at the aperture AL. The values 1{ (i = 1, 2) are reference

voltages at the apertures. Because of symmetry in the excitation
1’1 = t~ = }~.

The electromagnetic field of the normally incident plane wave with

a linear polarization is

where ~ = (y/c) 1‘z is the intrinsic impedance of the medium and

k is the wave number. It is convenient to set EO = 1.Since the

equivalent magnetic current Ml = ~ outside the aperture .41, the

limits of the double integral in (1) can be extended to infinity. We

take a two-dimensional transform over the current (and the magnetic

field) at the plane of the screen (z = O)

w

til(k., ku) =
[-

-Ml(Tl,:w)e ‘(k-r’ +k’v’)dxldyl. (3)

—m

With the use of Parseval’s theorem, the expression for the mutual

admittance (1) could be written in the spectral form

.

(4)

The magnetic field Hz of the current T12 can be determined by [6]:

where the scalar Green’s function for the free space is

G(r) = ~

and T is the distance between a point S ( Z2, Y2) (source) and a point

P(zI, UI) (observer), ? is the unit dyadic and V = .it2/t3.z+ ~8/i?y.

The limits in (5) can be extended to infinity since ~Z = ~ outside

Az, and the integral takes the convolution form. The application of

the convolution theorem in (5) gives

where the Fourier transform of the Green’s function is [7]

(6)

Now we are introducing the polar coordinates (J, a) in the spectral

space kz = kfl cos a, /tu = k~ sin a. Then (4) can be

as follows:

where ~ is the spectral admittance matrix given below:

performed

(7)

[

1 – /32/2 – f12f2cos2cl –@2/2 sin 2Q

–~’/2 sin 2a 1 – lY/2 + ;32/2cos2n 1

Now we must determine the Fourier transform of the magnetic

currents M, (i = 1,2). We can assume a uniform current M, = j.k10

but a better approximation using edge conditions is [5]

where t,= p,/a. It is convenient to introduce a global rectangular

coordinates (z. Y) instead of local polar coordinates (pt, P,) (i =

1, 2). The exponent in the Fourier transform for the aperture .% is

L!Z.zl + kyyl = k,5’Rcos(4!) – a) + k3p2 cos(y32 – a) (9)

The same expression holds for the aperture .A1 with R = O,(P2, w )
replaced by (p 1, pl ). Now we can find the Fourier transform for

the magnetic current ~Z. By a substitution of (8) and (9) in (3)

we have (10), which is shown at the bottom of the page, where

$ = kR@cos(@ – w), t = ~2/tL.
First, we take the integral over vz. Second, we replace sin 2pZ

and cos 2pz by the exponential functions. Third, we use the integral

representation of a Bessel function of the first kind, order m [8]:

1

.2T+Z
.Jm(z) = j-m/2ir e“nve’zcos~dp (11)

.
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where % is a constant. Fourth, we use the integral formula [9]:

J Ju+n Ju – n1 Tn(~) Jv(7~)&= n/2 ~

o-
(7/2) ~(7/2) (12)

where Tn(t) is aChebyshev polynomial, ordern. After performing

these operations we find

~~zz = MOma2/2eJ~ sin 2aI12(~)

iIy~ = M07ra2/2eJo{Ii~ (~) – cos 2aK’(fi)} (13)

where (T = Ax@)

A’I(p) = 1/73[(3 + 72) sinv – 37cos71

K2(/3) = 1/73 [(3 – ~’) sin-y – 37cos7] (14)

Equation (13) defines the Fourier transform of the current ~z.

For the Fourier transform of the current ml we can use the same

expression after setting q5 = O. Then we can find the mutual

admittance by performing a double integration as given in (7). After

taking integration over a and using (11) again, we have

J;, = ~
/{~V o- [(1 - ~2/2)(A”I + A-’)’ - 2A-, K2]JO(UU)

– Cos 24[82/2(A-l + A-2)2 – 21fl K’].J2(tl/3)} ~ ‘3dp
P

(15)

where u = ka and v = kR.

The integral in (15) consists of two parts: 1) /3 C (0,1) where

(1–~’)11’ isreal;2)~ c (l, cm) where (l-~z)llz = –j((32-1)’i2

is imaginary. The first integral gives the real part and the second

one—the imaginary part of the mutual admittance Ylz = G1’ +j Ill’.

In the first integral since /3 < 1 and u < 1 (for small holes) we

have ~ = up <1 and with this approximation we get from (14)

A“l = 2, h“ = O. We find for the real part after performing the

integration analytically

GI’ = u2/(8v)[L, (v) – COS274L’(W)] (16)

where

LI(v) = 1/v3[(l + U2) sinv – v COSV]

L2(v) = l/v3[(3 – U2) sinv – 3V cosv] (17)

For the imaginary part we have the exact expression

l?,’ = –U2/(8q)[L3(V) + COS24L.(V)] (18)

where

L3(’V) =
/

,m [(p’/2 - I)(Ii-, + R-2)2 + 2A”IA-2]JO(VD) /~

LA(v) = /[m~2/2(KI + 1{ ’)2 - 2KIK2]J2 (u(3) ‘3dB
1

J= (19)

We must take the integrals (19) only numerically after setting ~ =

cosh T and integration over r at limits (O. T) where T is a large

enough number.

For the special case v = O(R = O) we can get expression for the

self admittance Yll = Gll + jB1l. From (17) for v = O we find

LI = 8/3, L’ = O. In this approximation we obtain from (16)

G1l = ~.
3r/

(20)

We can take approximately (82 – 1)1/2 % @ (for E > 1) in

the integral for BM in (15). For v = O this procedure gives the

approximate expression

B1l = – JmJ;,, (&. (21)
o
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Fig. 2. Mutual admittance between circular apertures (a/A = O.10).

Now use the integral formula [9]:

J“J:(-): = ,;
o

for the case v = 3/2 we get

Bll _ 37r

8rIu “

(22)

(23)

The expressions (20) and (23) for the self admittance completely

coincide with the corresponding expressions, derived by Barrington

[10] by a different approach. For the spacing O < R < 2a(0 < v <

2u) the formulas (16) and (18) are not valid since it is a nonphysical

situation.

III. NUMERICAL RESULTS

Two numerical examples with radius a = 3 mm and a = 4.5

mm are evaluated for A = 30 mm. G11 and B11 are computed

by (20) and (23); G1’ and Blz by formulas (16) md (18). (19)

was computed by numerical integration using an adaptive Newton-

Cotes formula [11]. The results for a normalized admittance Y1’ v as

function of a normalized distance R/J for the case a = 3 mm are

shown in Fig. 2 (corresponding to ~ = 0° and v = 90° ) and for the

case a = 4.5 mm in Fig. 3 (corresponding to the same angles). In

the first case we obtain I’ll q = 0.132 – j 1.875 and in the second

one Y11~ = 0.296 – j 1.250 (for both angles). The directions of

the electric fields are shown by pointers. The numerical experiments

showed that an accurate enough value for B1’ is obtained even when

the parameter T is relatively small (T = 10).

IV. CONCLUSION

In this paper an approximate analytical treatment for the complex

mutual admittance Y12 = Glz + jB12 between two small circular

apertures in a conducting screen. excited by normally incident pllane

wave, is given. For the real part one can use the expression (16)

and for the imaginay part-the expression (18). For the special case

when the dktance between the holes R = O we find the proper

values for the self admittance Y11 = G11 + jBl 1 in (20) and (23),
which completely coincide with the results obtained by Barrington
[10] by a different technique. The method proposed in this paper can

be extended for the case of oblique incident plane wave.
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Fig.3. Mutuatadmittance between circular apertcrres(a/A =O.15).

The canonical problem for the evaluation of the mutual admittance

between two circular apertures which is solved here, can be used

for the anrdysis of aperture antenna arrays, excited by waveguides

and cavities [12], [13] and of frequency selective surfaces, excited

by plane wave as well [14]. By using the duality we can find also

the mutual impedance between two small circular conducting discs,

excited by a plane wave.
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Capacitance and Inductance Matrices

of Coupled Lines From Modal Powers

Smain Amari

Abstract— The capacitance and inductance matrices of a system of

coupled lines are calculated from the modal powers. Knowledge of the
propagation constants of the different modes, the eigencurrent matrix
[LfI] and the modal powers uniquely specify the two matrices. The
present approach is tested both analytically and numerically.

I. INTRODUCTION

Systems of coupled lines constitute an important part of modern

integrated circuits. In many applications, the time response of this

systems is necessary in describing the propagation of waveforms.

Unfortunately, most available methods of analysis yield frequency

dependent parameters with a complex frequency dependence. In

principle, the time response could be obtained by taking an appro-

priate inverse integral transform such as Laplace or Fourier. Such

an approach is, however, of limited practical value especially for a

large number of lines. A method which seems to have found a large

acceptance is based on devising equivalent lumped circuits for the

system. Such circuits can then be designed using traditional methods

of filter synthesis.

In this study, a method based on modal powers is used in

determining the capacitance and inductance matrix of N coupled

lines. Tripathi and Lee [1] give expressions for the capacitance and

inductance matrices in terms of the characteristic impedances of the

individual lines. Besides the fact that this assumes the possibility of

having an accurate definition of these characteristic impedances, one

needs to calculate these -V x N parameters. It is shown here that

it is possible to compute the two matrices without making use of

the characteristic impedances whose privileged role is shifted to the

normal modes and their powers. The use of modal powers which

are uniquely defined from the electromagnetic field is expected to

improve the accuracy of analysis of time response. This, however, is

not rigorously justified in this paper. It also reduces the computational

effort since one needs only N independent quantities, the modal

powers, instead of the N x AT characteristic impedances of the lines.

Wei et al. and Weeks determined the capacitance matrix by solving

the static boundaryvalue problem [2], [3]. This does not take into

account the dispersive character of systems of coupled microstrips

and the like.
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