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Fig. 2. HP 8510B automated network analyzer set-up for the measurement
of the complex reflection coefficient of a dielectric sample embedded in a
matched rectangular waveguide.

TABLE 1I
NUMBER OF ITERATIONS NEEDED BY A) MULLER’ § AND B)
DAVIDENKO’ s METHODS TO0 FIND THE COMPLEX DIELECTRIC
CONSTANT FROM REFLECTION COEFFICIENT MEASUREMENTS AND (12)

Guess A B
(3,-1) 7 15
(1,-3) 1 16
4,-1) 7 15
5,-9) 9 16
@2,-1) 7 15
5,-1) 8 16
1,3) Fails 17
(5,4) 9 17
(1,6) Fails 18
(2,10) 13 18

iterations required by each method to converge to the root within a
specified tolerance (10™%). Only Muller’s and Davidenko’s methods
were compared. In this example, Muller’s method appears to converge
faster than Davidenko’s for some initial guesses but diverges for other
values. As in the previous example, the number of iterations required
by Davidenko’s method to converge is independent of the initial guess
chosen (N ~ 17). For the given measured data, both Muller’s and
Davidenko’s methods yield a complex relative dielectric permittivity
of e, ~ (2.080465, —0.051842).

IV. CONCLUSIONS

In this paper we explored the capabilities of Davidenko’s method
as a complex root-search routine. It shows to be as promising as
Muller’s method and hence could be used as an alternative if Muller’s

method is slowly convergent or if it fails to converge to the root.
The only apparent setback for Davidenko’s method is that it requires
the analytical expression of the first derivative (if it exists) of the
complex function.
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Mutual Coupling Between Two Small
Circular Apertures in a Conducting Screen

Sava V. Savov

Abstract—With the use of the reaction integral and two-dimensional
Fourier transform, an analytical expression for mutual coupling between
two small circular apertures in a conducting screen, excited by normally
incident plane electromagnetic wave, is obtained. Numerical examples
for two different polarizations of the plane wave are investigated. The
expression for the mutnal admittance gives a correct value of the self
admittance of a small aperture when the distance between the holes is
equal to zero.

I. INTRODUCTION

The problem of computing the mutual coupling between two
equal apertures is a classical one. For the case of two narrow
parallel rectangular apertures excited by a plane electromagnetic
wave, it is dual of the problem of computing mutual coupling
between two electric dipoles, which was solved for the first time
by Carter [1] and later more accurately by King [2]. The problem
of computing analytically the mutual coupling between two open
circular waveguides was solved by Bailey [3]. The problem of the
computing analytically the mutual coupling between two circular
apertures in a conducting screen, excited by a plane wave, is studied
in this paper.
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Fig. 1. The geometry of the problem.

II. FORMULATION AND SOLUTION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. Two equal
apertures A; and A, having radius e are considered. The first one has
a center O1(0,0) and the second one O(R cos v, Rsin ), where
R is the distance between two centers and ¢ is specified in Fig. 1.
For the sake of convenience two different polar coordinates (at each
aperture) are chosen (p,, . )i = 1,2).

By definition, the mutual admittance between two apertures is
given by the reaction integral [4]:

1 — e
Yig = ——— My Hydxd
12 V1V2// 1 20T10Y1
Ay

where according to the equivalence principle the magnetic current
W, is related to the electric field E, by M, = % x E,(# is unit
vector along the z-axis). The magnetic field H is generated by the
current 3 at the aperture A,. The values V, (i = 1. 2) are reference
voltages at the apertures. Because of symmetry in the excitation
V=1V, = V.

The electromagnetic field of the normally incident plane wave with
a linear polarization is

Ey = :%Eoefjkz,ff_o = y"Eo/neﬁk:

(€))

2

where n = (u/€)*/? is the intrinsic impedance of the medium and
k is the wave number. It is convenient to set £y = 1. Since the
equivalent magnetic current M; = 0 outside the aperture Ay, the
limits of the double integral in (1) can be extended to infinity. We
take a two-dimensional transform over the current (and the magnetic
field) at the plane of the screen (z = 0)

o0
My (ke key) = // M (rr,yr)e’ S e dpdyy. (3)
With the use of Parseval’s theorem, the expression for the mutual

admittance (1) could be written in the spectral form

1

Vi = ‘W// M, - Hydk,dk,. @)
0 J
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The magnetic field H of the current M., can be determined by [6]:

T, = —25—[ﬁ + k2] // G(r)Madradys 3)
n 1,
where the scalar Green’s function for the free space is

e—]kr

dmr

G(r) =

and 7 is the distance between a point S{xa.y2) (source) and a point
P(xq, y1) (observer), T is the unit dyadic and V = £8/0x + j/dy.
The limits in (5) can be extended to infinity since A, = 0 outside
As, and the integral takes the convolution form. The application of
the convolution theorem in (5) gives
E? — k2
—k.ky

"‘kxky .

# J
Hy = =2 . 2 GM,
K -k}

o (6

where the Fourier transform of the Green’s function is [7]

G J

2/k? — k2 — 2
Now we are introducing the polar coordinates (i3, ) in the spectral
space k; = kpcosa.ky = k3sina. Then (4) can be performed

as follows:
co 27 .
/ / My
0 0

where Y is the spectral admittance matrix given below:
1
' {1 — 3%/2 — 3%/2 cos 2a

k2
M

~ _k
7 >
Vo

Yoy = Y- )

BdBda

Y=

—3% /2 sin 20 }

—3?/2sin 20 1—8%2/2 + 3%/2cos 2

Now we must determine the Fourier transform of the magnetic
currents M, (7 = 1,2). We can assume a uniform current M, = gMo
but a better approximation using edge conditions is [5]

M, = p, Mysin,4/1 — t2
tZ
+ & Mo cos 0,0.5|24/1 — 2 + ﬁ (8)
where ¢, = p,/a. It is convenient to introduce a global rectangular

coordinates (x,y) instead of local polar coordinates (p,,w,)(7
1,2). The exponent in the Fourier transform for the aperture Ao is

©

The same expression holds for the aperture A; with R = 0, (p2. 2)
replaced by (p1,1). Now we can find the Fourier transform for
the magnetic current M. By a substitution of (8) and (9) in (3)
we have (10), which is shown at the bottom of the page. where
¢ = kRBcos(yp — ).t = pa/a.

First. we take the integral over 3. Second, we replace sin 2.
and cos 2y, by the exponential functions. Third, we use the integral
representation of a Bessel function of the first kind, order m [8]:

kyx1 + kyyr = k3R cos(¥ — o) + kBp2 cos(pz — «)

2T AT
']m(:) — me/zn_‘/ e]n’txﬂejzcos\r’d(p (11)

£

(10)

. 1 2%
Mzs = Zﬂoaz/—lem/ / {\/1 2 *_11_7;} sin Qpr_)e’katcoswz_a)tdtdgoz
o Jo -1
- 5 6 1 27 1
Myy = Mya® /4e’ / / {3\/1—1‘2—1—7—
2= Mo 4 i-e

e -

T—;T} Cos 2,:_»}( hut cos P2 dtd ey
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where z is a constant. Fourth, we use the integral formula {9]:
1
T () Jv —I— n
(v/2 7/2)
| 2 202
where T, (t) is a Chebyshev polynomial, order n. After performing
these operations we find

Jo(yt)dt = = /2

(12)

Mas = Moma® /2¢’% sin 20K 2 (3)
Myy = Mowa®/2e’*{K1(8) — cos 205 ()} (13)
where (v = kaf)
K1(8) = 1/4[(3+7") siny — 3ycos 7]
K»(8) = 1/7°[(3 = +*) siny — 3y cos 1] (14)

Equation (13) defines the Fourier transform of the current M.
For the Fourier transform of the current M; we can use the same
expression after setting ¢ = 0. Then we can find the mutual
admittance by performing a double integration as given in (7). After
taking integration over o and using (11) again, we have

2 1 1 2 1422]J0

V-7

15)

— cos 29[8% /2(R1 + R2)® — 2K1 Ka)Ja(v)} -

where © = ka and v = kR.

The integral in (15) consists of two parts: 1) 3 € (0,1) where
(1—3%)"/? isreal; 2) f € (1,00) where (1—-3%)'/2 = —j(3>-1)1/?
is imaginary. The first integral gives the real part and the second
one—the imaginary part of the mutual admittance Yi2 = Gi2+jBioa.
In the first integral since 8 < 1 and v < 1 (for small holes) we
have v = uf8 < 1 and with this approximation we get from (14)
K, = 2,K, = 0. We find for the real part after performing the
integration analytically

Giz = 4 /(8n)[L1(v) — cos 29/ L3 (v)] (16)
where

Li(v) = 1/v°[(1 4+ v¥) sinv — v cos ]

Ly(v) = 1/0°[(3 — v?) sin v — 3v cos v] an
For the imaginary part we have the exact expression

Biz = —u?/(8n)[Ls(v) + cos 2¢ Ly (v)] (18)
where
Ls(v) :/ [(ﬂ /2 - 1)K, + I\z) + 2K IxQ]Jo(Uﬂ ﬂdﬂ

1 V-1

La(v) = / [32/2(Ky + K2)? — 25, B3] Ja m% (19)

We must take the integrals (19) only numerically after setting 8 =
cosh T and integration over 7 at limits (0.7") where T is a large
enough number.

For the special case v = O(R = 0) we can get expression for the
self admittance Y11 = Gh1 + jBii. From (17) for v = 0 we find
Ly = 8/3, L, = 0. In this approximation we obtain from (16)

2

G =
11 = 3,]

We can take approximately (3% — 1)/2 =~ g (for 3 > 1) in
the integral for Bis in (15). For v = 0 this procedure gives the
approximate expression

et d
By = —/ J32/2('7)‘l'
0 b

(20)
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Fig. 2. Mutual admittance between circular apertures (¢/A = 0.10).

Now use the integral formula [9]:

= dv 1
I===
/0 () ST (22)
for the case v = 3/2 we get
By = __37r 23)
Snu’

The expressions (20) and (23) for the self admittance completely
coincide with the corresponding expressions, derived by Harrington
[10] by a different approach. For the spacing 0 < B < 2a(0 < v <
2w ) the formulas (16) and (18) are not valid since it is a nonphysical
situation,

III. NUMERICAL RESULTS

Two numerical examples with radius ¢ = 3 mm and a = 4.5
mm are evaluated for A = 30 mm. G1; and Bii are computed
by (20) and (23); Gi12 and B2 by formulas (16) and (18). (19)
was computed by numerical integration using an adaptive Newton-
Cotes formula [11]. The results for a normalized admittance Y127 as
function of a normalized distance R/X for the case a = 3 mm are
shown in Fig. 2 (corresponding to ¢» = 0° and v = 90°) and for the
case ¢ = 4.5 mm in Fig. 3 (corresponding to the same angles). In
the first case we obtain Y137 = 0.132 — j1.875 and in the second
one Y11 = 0.296 — j1.250 (for both angles). The directions of
the electric fields are shown by pointers. The numerical experiments
showed that an accurate enough value for B, is obtained even when
the parameter 1" is relatively small (T = 10).

IV. CONCLUSION

In this paper an approximate analytical treatment for the complex
mutual admittance Y12 = Gi2 + jBi2 between two small circular
apertures in a conducting screen. excited by normally incident plane
wave, is given. For the real part one can use the expression (16)
and for the imaginary part—the expression (18). For the special case
when the distance between the holes B = 0 we find the proper
values for the self admittance Y11 = G1i1 -+ jB11 in (20) and (23),
which completely coincide with the results obtained by Harrington
[10] by a different technique. The method proposed in this paper can
be extended for the case of oblique incident plane wave.
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Fig. 3. Mutual admittance between circular apertures (a/A = 0.15).

The canonical problem for the evaluation of the mutual admittance
between two circular apertures which is solved here, can be used
for the analysis of aperture antenna arrays, excited by waveguides
and cavities [12], [13] and of frequency selective surfaces, excited
by plane wave as well [14]. By using the duality we can find also
the mutual impedance between two small circular conducting discs,
excited by a plane wave.
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Capacitance and Inductance Matrices
of Coupled Lines From Modal Powers

Smain Amari

Abstract— The capacitance and inductance matrices of a system of
coupled lines are calculated from the modal powers. Knowledge of the
propagation constants of the different modes, the eigencurrent matrix
[Af;] and the modal powers uniquely specify the two matrices. The
present approach is tested both analytically and numerically.

1. INTRODUCTION

Systems of coupled lines constitute an important part of modern
integrated circuits. In many applications, the time response of this
systems is necessary in describing the propagation of waveforms.
Unfortunately, most available methods of analysis yield frequency
dependent parameters with a complex frequency dependence. In
principle, the time response could be obtained by taking an appro-
priate inverse integral transform such as Laplace or Fourier. Such
an approach is, however, of limited practical value especially for a
large number of lines. A method which seems to have found a large
acceptance is based on devising equivalent lumped circuits for the
system. Such circuits can then be designed using traditional methods
of filter synthesis.

In this study, a method based on modal powers is used in
determining the capacitance and inductance matrix of N coupled
lines. Tripathi and Lee [1] give expressions for the capacitance and
inductance matrices in terms of the characteristic impedances of the
individual lines. Besides the fact that this assumes the possibility of
having an accurate definition of these characteristic impedances, one
needs to calculate these N x N parameters. It is shown here that
it is possible to compute the two matrices without making use of
the characteristic impedances whose privileged role is shifted to the
normal modes and their powers. The use of modal powers which
are uniquely defined from the electromagnetic field is expected to
improve the accuracy of analysis of time response. This, however, is
not rigorously justified in this paper. It also reduces the computational
effort since one needs only N independent quantities. the modal
powers, instead of the IV x N characteristic impedances of the lines.
Wei et al. and Weeks determined the capacitance matrix by solving
the static boundary-value problem [2], [3]. This does not take into
account the dispersive character of systems of coupled microstrips
and the like.
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